Generate Plots for Analysing Feature Cell Abundance
Source:R/inverseGradCAM.R
plotGradCAMFeatureCells.Rd
This function processes clustering results, plots each cluster, and overlays each cluster's convex hull. It is adaptable to any number of cell_cluster_id.
Usage
plotGradCAMFeatureCells(
x,
feature_matrix,
p_adjust_method = "BH",
ncol = 3,
min_cells = 10,
title = "GradCAM Feature Cells",
Timer_positive = TRUE,
ylim = NULL
)
Arguments
- x
TockyPrepData object (required for "gating" mode)
- feature_matrix
Feature intensity matrix from Grad-CAM analysis
- p_adjust_method
A method for p-value adjustment in multiple testing using Mann Whitney. clusteringFeatureCells cen be used.
- ncol
Number of columns in output figure panel.
- min_cells
Numeric. The minimum nunmber of cells within a cluster to be analysed. The default is 10.
- title
A character for the title of plot.
- Timer_positive
Logical. Whether to remove Timer negative cells.
- ylim
Optional. A numeric vector of the length 2 for specifying ylim.
Examples
if (FALSE) { # \dontrun{
data <- data.frame(Angle = runif(100), Intensity = runif(100))
cell_cluster_id <- dbscan(data, eps = 0.1, minPts = 5)$cluster
plotGradCAMFeatureCells(data, cell_cluster_id)
} # }